NMR STUDIES OF PENICILLINS AND CEPHALOSPORINS. IV.¹⁾ 7-ACYLAMINO SUBSTITUENT EFFECT ON STRUCTURE-REACTIVITY RELATIONSHIP OF CEPHALOSPORINS STUDIED BY CARBON-13 NMR SPECTROSCOPY

Sir:

In the preceding paper¹⁾, we reported that the differences in ¹³C NMR chemical shifts, δ , between C-4 and C-3, $\Delta\delta(4-3)$, values of cephalosporins may be used as good reactivity indices for C-3 methylene substituent effects in both Nasalts and esters. It is well known that C-7 acylamino substituents have a great influence on antibacterial activities of cephalosporins²⁾. They are considered to have some effects on the reactivities of the compounds also, although it has been suggested that C-7 acylamino substituents do not significantly affect the reactivity of the β lactam ring^{3,4)}. As a result of an NMR study, **PASCHAL** et al.⁵⁾ described that the δ (C-8) and δ (N-5) values are essentially insensitive to the variations in the 7-acylamino moiety. By detailed examinations of 7-acylamino substituent effects on the ¹³C NMR spectra of cephalosporins, we found that the δ (CONH) values correlate with the rate constants k_{OH} for the OH⁻-catalyzed degradations⁴⁾. We report our results here.

The ${}^{13}C$ spectral parameters of sodium cephalosporanates (Y=OCOCH₃) and deacetoxycephalosporanates (Y=H) having a variety of 7β acylamino substituents (XCONH) are listed in Table 1, which also includes data reported in the reference⁵⁾. The ¹⁸C signals were assigned according to the methods reported previously^{5~0}).

First, we plotted each δ (C-8) and $\Delta\delta$ (4–3) against δ (CONH) observed for the deacetoxycephalosporanates $(1 \sim 9)$ as shown in Fig. 1; similar plots for the cephalosporanates $(10 \sim 20)$ are shown in Fig. 2. Although the $\Delta\delta(4-3)$ and the δ (C-8) values changed only slightly with a change in the 7-acylamino substituents, each parameter exhibited a good linear relationship with the δ (CONH) value. In ¹³C NMR spectra of Nmethylamides, RCONHCH₃, a good linear relationship between the δ (CONH) values and the inductive σ_{I} constants of R has been found^{10,11)}. In the cephalosporins examined here, a similar correlation between the δ (CONH) values and the $\sigma_{\rm I}$ constants of X appears to exist at least partially (Fig. 3). This suggests that the δ (C-8) values should also be correlated with the σ_{I} values of X. Compounds having 7-acylamino groups other than RCH₂CONH, e.g., HCONH, CH₃CONH, p-R-PhCONH, and Ft, appear not guite to fit into the correlations, which might be due to different molecular conformations including the 3cephem-ring geometry.

The log k_{OH} values for the OH⁻-catalyzed degradation of cephalosporins reported by YAMANA and TSUJ⁴) were found to correlate better with the δ (CONH) values of both cephalosporanate series

Fig. 1. δ (C-8) and $\Delta\delta$ (4–3) vs. δ (CONH) for the deacetoxycephalosporanate series.

THE JOURNAL OF ANTIBIOTICS

Com-	Substituents		ô					δ(4–3)	Reference
No.	Х	Y	C-3	C-4	C-8	CONH	4-COO-	(ppm)	Reference
1	TetCH ₂	Н	123.6	127.5	164.8	168.2	170.7	3.9	This work
2	Ph	Н	123.2	127.6	165.1	171.5	170.7	4.4	This work
3	<i>p</i> -CH₃Ph	Н	123.3	127.7	165.2	171.0	170.7	4.4	This work
4	PhOCH ₂	Н	$\begin{array}{c} 123.1\\ 123.4 \end{array}$	$127.4 \\ 127.6$	$164.8 \\ 164.7$	$173.1 \\ 172.3$	$170.8 \\ 170.4$	4.3 4.2	This work 5)
5	$ThCH_2$	Н	123.2	127.5	165.0	174.6	170.6	4.3	5)
6	CH_3	Н	123.1	127.4	165.5	175.7	170.8	4.3	This work
7	$PhCH_2$	Н	123.1	127.4	165.1	176.1	170.8	4.3	This work
8 °	PhCH(NH ₂)	Н	$123.2 \\ 122.7$	$127.7 \\ 127.4$	165.1 164.8	$176.7 \\ 176.9$	$170.4 \\ 170.6$	4.5 4.7	This work 5)
9	Ft (XCONH)	Н	127.0	131.6	162.6	169.3	170.5	4.6	This work
10	Н	$OCOCH_3$	117.1	132.3	165.5^{d}	165.4^{d}	169.1	15.2	5)
11	TetCH ₂	$OCOCH_{3}$	117.2	132.3	165.1	168.2	169.2	15.1	5)
12	Ph	$OCOCH_3$	116.8	132.5	165.5	172.0	169.3	15.7	This work
13	p-Cl-Ph	$OCOCH_3$	116.9	132.5	165.5	170.6	169.3	15.6	This work
14	$PhOCH_2$	$OCOCH_3$	117.0	132.3	165.1	172.7	169.1	15.3	5)
15	$ThCH_2$	$OCOCH_3$	116.9	132.3	165.4	174.8	169.1	15.4	5)
16	CH_3	$OCOCH_3$	116.9	132.3	165.9	175.5	169.2	15.4	5)
17	$PhCH_2$	$OCOCH_3$	116.9	132.3	165.5	176.0	169.2	15.4	5)
18	PhCH(OH)	$OCOCH_3$	116.8	132.3	165.2	176.2	169.0	15.5	5)
19	AAA	$OCOCH_3$	116.9	132.3	165.7	177.3	169.3	15.4	5)
20°,e	PhCH(NH ₂)	$OCOCH_3$							This work

Table 1. Carbon-13 NMR spectral data on cephalosporins.^{a, b}

- ^a Detailed spectral data with full signal assignments will be reported in our full paper.
- ^b ¹³C NMR spectra were recorded on a Varian NV-14 FT NMR spectrometer at 15.087 MHz in D₂O at ordinary probe temperature (30°C) using about 0.1 mmole/ml solutions containing internal dioxan reference (δ 67.4) in 8-mm spinning tubes. Typical FT NMR measurement conditions are: spectral width, 3923 Hz; pulse width, 13 µs (flipping angle, 19°); acquisition time, 0.6 s; number of data points, 4820.
- ^c Measured at pD>10, since the spectra of these compounds were affected by the ionization of NH₂ in the substituent X at pD<10. The spectra of the other compounds were measured at pD $4 \sim 7$; they were not changed at pD>4.
- ^d Assignments may be reversed.
- ^e Not observable because this compound was rapidly degraded at high pD. For the plot in Fig. 4, we therefore used the same ∂ (CONH) value as that for compound **8**, because the ∂ (CONH) values only changed within 0.5 ppm when Y changed from H to OCOCH₃.

than the δ (C-8) values, which change only slightly from compound to compound. Apparent linear relationships were found in the two cephalosporin series, as shown in Fig. 4. Therefore, the δ (CONH) value may be used as a good index for the 7-acylamino substituent effect on the reactivity of cephalosporins. A shift of the ∂ (CONH) value to a lower field parallels an increased reactivity.

We are now extending this work to examining the effects of the 7-acylamino substituent in both

Fig. 4. Relationships between k_{OH} reported⁴⁾ and ∂ (CONH) (see footnote *e* in Table 1).

Na-salts and esters of penicillins and cephalosporins.

Acknowledgments

We thank Drs. W. NAGATA, R. MUNEYUKI, M. NARISADA, H. MATSUMURA and S. YAMAMOTO of these laboratories for providing us with the samples used.

Junko Nishikawa Kazuo Tori*

Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

(Received July 16, 1981)

References

- NISHIKAWA, J. & K. TORI: NMR Studies of penicillins and cephalosporins. III. 3-Methylene substituent effect on structure-reactivity relationship of cephalosporins studied by carbon-13 NMR spectroscopy. J. Antibiotics 34: 1641~ 1644, 1981
- FLYNN, E. H.: "Cephalosporins and Penicillins: Chemistry and Biology." Academic Press, New York, N. Y., 1972
- INDELICATO, J. M.; T. T. NORVILAS, R. R. PFEIFFER, W. J. WHEELER & W. L. WILHAM: Substituent effects upon the base hydrolysis of penicillins and cephalosporins. Competitive intramolecular nucleophilic amino attack in cephalosporins. J. Med. Chem. 17: 523~527, 1974
- YAMANA, T. & A. TSUJI: Comparative stability of cephalosporins in aqueous solution: kinetics and mechanisms of degradation. J. Pharm. Sci. 65: 1563~1574, 1976

- PASCHAL, J.W.; D.E. DORMAN, P.R. SRINIVASAN & R. L. LICHTER: Nuclear magnetic resonance spectroscopy. Carbon-13 and nitrogen-15 spectra of the penicillins and cephalosporins. J. Org. Chem. 43: 2013~2016, 1978
- 6) MONDELLI, R. & P. VENTURA: ¹³C Nuclear magnetic resonance of N-heterocycles. 3. ¹³C Chemical shift assignments of the carbonyl groups in penicillins and cephalosporins. J. Chem. Soc., Perkin II 1977: 1749~1752, 1977
- 7) DEREPPE, J. M.; A. SCHANCK, B. COENE, C. MOREAU & M. VAN MEERSSCHE: Some features of the ¹³C NMR of cephalosporins. Org. Magn. Resonance 11: 638~640, 1978
- SCHANCK, A.; B. COENE, M. VAN MEERSSCHE & J. M. DEREPPE: Carbon-13 NMR of cephalo-

sporins. Ibid. 12: 337~338, 1979

- 9) TORI, K.; J. NISHIKAWA & Y. TAKEUCHI: ¹³C NMR spectra of cephalosporins. Signal assignments of free acids and esters. Tetrahedron Lett. 22: 2793~2796, 1981
- 10) DORIE, J.; J. P. GOUESNARD, B. MECHIN, N. NAULET & J. MARTIN: Applications of ¹⁵N NMR spectroscopy to the study of unsymmetrically N-substituted amides and model peptide compounds. Org. Magn. Resonance 13: 126~ 131, 1980
- EXNER, O.: A critical compilation of substituent constants. in "Correlation Analysis in Chemistry. Recent Advances." *Ed.* N. B. CHAPMAN & J. SHORTER, Chap. 10: 439~540, Plenum Press, New York, N.Y., 1978